
The B-Fabric Life Sciences Data Management System
(Extended Abstract)

Can Türker Dieter Joho Fuat Akal Christian Panse
Simon Barkow-Oesterreicher Hubert Rehrauer Ralph Schlapbach

Functional Genomics Center Zurich, Winterthurerstr 190, 8057 Zurich, Switzerland
<tuerker|joho|akal|cp|sb|rehrauer|schlapbach>@fgcz.ethz.ch

1 A Few Basics and Facts about B-Fabric

B-Fabric [1] is a life sciences data management system for integrated management of
experimental data and scientific annotations. For scientific data annotation, B-Fabric pro-
vides a concise metadata schema (see Figure 1). All scientific data is organized in projects.
Within a project, a user creates and generates data resources, e.g., representing the result
of an experiment or an analysis. Related data resources like those belonging to the same
experiment or analysis are stored together in a workunit. Every data resource can be asso-
ciated with an extract. This is for instance the case when the data resource represents an
experiment in which the corresponding extract was used. Extracts and samples describe
the biological sources of experiments, measurements, and whatever a workunit represents.

input

0..* 0..*

Application

0..*
produces

Sample

comprises

Extract

Workunit
Data

Resource1..* 1..*

biological source

ex
pe

ri
m
en
t s
ou

rc
e

0..1 0..*

Project

0..*

1..*

0..*

0..*

Derived
Extract

1..*

Experiment
Definition

us
es

0..*

1..*

Figure 1: The Core Classes of B-Fabric’s Metadata Schema (in UML)

For a user’s point of view, B-Fabric provides the following functionality:

• Register samples/extracts: A user describes his biological sources as detailed as
possible using an extensible vocabulary that is maintained and curated by experts
(in our case employees of the research center).

• Import data: The user selects an instrument from where he wants to import data. The
user then selects the files and describes the workunit. Finally, the data resources are
either linked or copied to B-Fabric while the user associates the data resources to
extracts.

• Data browsing: All main objects are bidirectionally linked together such that the
user can easily browse through his/her data network.

• Quick and advanced search: A user may find relevant data using full-text search.

• Direct access: Besides full-text search, there are direct links to the central object
classes, e.g. projects, samples, extracts, and workunits.

• Data export: A user may export the data in various ways, e.g., the entire workunit
as a zip file. Since the size of a workunit may be huge, B-Fabric in the background
creates a zip file and provides it for download as soon as the zip file is generated.

• Work history: B-Fabric saves the work history such the user can check afterwards
which persistent data management operations were executed.

• Open tasks: B-Fabric shows the workflow tasks that the user has still to perform.

• Run external applications: A user can invoke external applications with B-Fabric
data. Depending on the type of data resources, the B-Fabric provides the necessary
invocation buttons and forms, respectively.

At the Functional Genomics Center Zurich (FGCZ), B-Fabric is running in daily business
for over two years. Here are some figures about the FGCZ deployment (as of May 2009):

Users 1274 Samples 2195
Projects 664 Extracts 2375
Institutes 193 Data Resources 25756
Organizations 41 Workunits 14959

The typical users are researchers (usually PhD students interested in running experiments),
lab heads (usually professors interested in the experiment results), and FGCZ employees
(instrument experts supporting and carrying out the experiments). The latter have special
rights, e.g., they are allowed to register applications. As the figures show, the users are
coming from many different institutions and organizations.

Technically, B-Fabric is composed of distributed, loosely-coupled components based on
open source technologies. Figure 2 sketches the architecture of B-Fabric. For a more
detailed description, please visit http://www.bfabric.org/.

Figure 2: B-Fabric: System Architecture

The B-Fabric repository stores experimental data. The B-Fabric database manages all
scientific annotations (e.g. about samples and extracts) and administrative data (e.g. about
users and projects). The frontend acts as Web portal providing users with controlled access
to the data. Workhorses execute specific tasks (e.g. data copying, indexing, searching) in
a distributed way. Frontends and workhorses communicate via asynchronous messaging.
The concept of registered applications allows an ad-hoc coupling of arbitrary applications
with B-Fabric. These applications may be external ones, autonomously running beyond
the control of B-Fabric. Applications can also be invoked within workflows to model
scientific pipelines. B-Fabric interacts with several external components. User PCs are
standard computers running a Web browser to enable access to B-Fabric through frontends.
Typically, a user searches and downloads B-Fabric data for analysis reasons. Various
data analysis/visualization tools are deployed on these PCs to accomplish those purposes.
Scientific data marts correspond to external systems that provide scientific functionality.
External data stores represent scientific data available on external systems. At any time,
any external data store can be attached to and made accessible via B-Fabric. Instrument
PCs refer to computers that are attached to an instrument that generates and holds scientific
data to be imported into B-Fabric.

The following table lists the key technologies glued together in B-Fabric:

Web Development Framework Apache Cocoon Database Server PostgreSQL
Object-Relational Mapping Apache OJB Workflow Engine OSWorkflow
Fulltext Indexing/Search Apache Lucene File Transfer OpenSSH
Asynchronous Communication Apache ActiveMQ Logging Apache log4j

2 Conclusions based on Experiences with B-Fabric

Provide small metadata schema with small but extensible vocabulary. In a very dy-
namic research environment as the FGCZ, it is practically impossible to agree on a schema
that can capture all potentially created data in the application domain at a detailed level of

granularity. Sticking one-to-one with standards such as MIAME or GO is not a solution,
too. First, there are researchers doing research on issues that have not been defined yet.
Second, researchers often use different notions and granularities to describe their experi-
mental data. Third, these standards are so huge in size that for most researchers they are
impractical for daily use. As an example, imagine a drop-down menu with ten thousands
of terms. Consequently, B-Fabric supports a data schema with a small set of commonly
agreeable attributes and restricts the underlying vocabulary to that part of corresponding
standards which is potentially needed for the research technologies supported at FGCZ.
To be open to new research directions, B-Fabric allows to dynamically extend the vocab-
ularies at run-time. As soon as a new entry is provided by a user, a reviewing process is
started. Depending on the project membership of that user, the coach of that project, in
our case an FGCZ employee, is triggered to review and release the new entry.

Support physical as well as logical data import. To annotate experimental data, the
system must first be aware of the corresponding files. Originally, B-Fabric was designed
to move all experimental data into its internal repository. Such a physical import is indis-
pensable in scenarios where the data cannot be maintained persistently at the instrument
PC or external data store. However, a physical import into a fully encapsulated repository
complicates the use and postprocessing of the data with typical analysis and visualization
tools. Since such tools require direct access to the data files, the files must be downloaded
to the corresponding places in the file system. Due to the size of the files and length of the
scientific pipelines, this puts the researcher into an undesired long pending state. Hence,
B-Fabric also supports a logical import (linking) of data such that the data files can reside
at an external data store. Pre-configured data providers take care of the original location
of the experimental data on the instrument PC and support a unified data handling based
on different protocols like ssh, smb, jdbc etc. Since B-Fabric provides a transparent access
to the data, researchers are not affected by the actually location of the data.

Loosely couple external applications. Since most expert facilities like the FGCZ have
already established data processing applications and pipelines, integrating them into a
common infrastructure is often a challenge. First, the original functionality is usually
provided by proprietary tools whose internal processing is not known. Second, the de-
veloper that created the application often is no longer available. Third, replacing existing
code eats up resources without providing new benefits for the users. We experienced that
implementing connectors to such external applications is quite laborious and that requests
for connecting new applications popped up faster than the implementation could progress.
As a result, we introduced the application registration concept. First, a connector is writ-
ten for a certain type of application, e.g. for running R scripts on an Rserve system. Then,
a small interface is defined to describe how the application gets its input. Finally, the re-
searcher writes the application in any language. The advantage of this approach is that
an upgrade or a replacement of components of an external application is possible without
touching the B-Fabric system. Nevertheless, defining the interface towards the external
application is still quite tricky. Allowing too much flexibility may result in errors since the
user usually is not aware of the restrictions of the corresponding external application.

Outsource data processing. Since instruments often produce data in proprietary for-
mats, B-Fabric is not able to interpret and process the experimental data — although it
knows the scientific annotations. A solution to that problem is to move the responsibility
of the data processing to external applications. B-Fabric provides the application input
via a small interface. An external application is then able to fetch the information from
B-Fabric to process the experimental data correctly. B-Fabric then just waits for the result.
This approach requires that B-Fabric trusts the external application to provide the result in
a correct way. The external applications need to take additional effort to process the data.
We experienced that examples and documentation on the development of connectors are
vital to support stable and generally accepted applications. However, if a certain level of
commitment is achieved, additional functionality can be provided quickly.

Export data. Regardless of the systems functionality, there are always users that need to
go further than any system can support. The best solution to address this issue is to provide
an easy access to the data. Researchers should be able to export data and do their data
processing on their own. B-Fabric provides several methods for data export. For instance,
search results can be exported. Another example is the download of data resources. Due
to the large size of the interconnected data, B-Fabric compresses the data and provides a
download link for the user. The download of predefined reports is another example. For
specific needs and applications, B-Fabric allows reports that collect and prepare data for
later use. If it turns out that researchers use a certain type of export very often to perform
a specific task, this task becomes a candidate for B-Fabric internal functionality.

Control data access and publishing. Life sciences researchers usually demand for strict
data access control while complaining about restrictions in the usage of the data for collab-
oration purposes. In B-Fabric, data access is controlled at project level. While the project
has not reached the publish state, the data is visible to the corresponding project members
only. This approach works well as soon as the projects are small and have exact goals. Dis-
advantages appear in case of huge projects that run for many years, especially when the
researchers involved in the same project should not be able to access each others results. A
proven simple but effective solution is to divide such projects into several smaller projects
according to their goals and members. In this way, the scientific data can be published as
soon as the corresponding research result have been accepted for publication somewhere.

References

[1] Türker, C., Stolte, E., Joho, D., Schlapbach, R.: B-Fabric: A Data and Application Integration
Framework for Life Sciences Research. In: Data Integration in the Life Sciences 2007, DILS
07, pp. 37-47, Springer-Verlag, 2007.

[2] Türker, C., Joho, D., Panse, C., Barkow-Oesterreicher, S., Akal, F., Schlapbach, R.: Applica-
tion Coupling and Data Feeding in an Integrative Life Sciences Data Management System To
appear in: Proc. of the Int. Conf. on Bioinformatics, Computational Biology, Genomics and
Chemoinformatics, Orlando, FL, USA, July 13-16, 2009.

