
An Open Source System for Life Sciences Data
Management and Integration

Can Türker, Fuat Akal, and Dieter Joho

Functional Genomics Center Zurich, Winterthurerstr 190, 8057 Zurich, Switzerland
<turker|joho>@fgcz.ethz.ch, akal@acm.org

Abstract. The advances in information technology boosted life sciences
research towards systems biology which aims at studying complex inter-
actions in biological systems in an integrative way. Steadily improving
high-throughput instruments, such as genome sequencers and mass spec-
trometers, and analysis software produce tremendous amounts of life sci-
ences data. In this paper, we describe a life sciences data management
system that we have implemented and deployed at the Functional Ge-
nomics Center Zurich. We highlight some crucial features and share some
experiences we made in developing and running this system.

1 Introduction

Life sciences research aims at characterizing complex biological organisms and
functions at the systems level. To achieve this ambitious goal, data produced in
different research projects and groups must be linked together. As the complexity
of the analytical systems in integrated functional genomics or systems biology
research has reached a level where specific, isolated application-oriented data
management and analysis has become apparently inefficient, a system for inte-
grated management of experimental data and scientific annotations is needed.
Such a system shall capture and integrate all generated scientific data in a way
that third parties can correctly interpret, reproduce, and reuse the data.

In [18] we motivated the need for such a system in more detail and introduced
B-Fabric, an open source life sciences data management system implemented
and deployed at the Functional Genomics Center Zurich (FGCZ). Meanwhile
B-Fabric is running for two years at FGCZ and is continuously extended with
new features. Basically, B-Fabric allows to store and annotate all data produced
at FGCZ. Any external data store can be attached to and made accessible via
B-Fabric. Users do not need to care about where and how the data is placed.
B-Fabric functions as data fabric capturing and providing the data transpar-
ently and in access-controlled fashion through a Web portal. Using its search
and browse features, inter-experiment and inter-project analysis becomes possi-
ble. Since experimental data is captured together with instrument parameters,
experiments become reproducible for third parties. Another core feature of B-
Fabric is the dynamic coupling of external applications. Once an application is
registered with B-Fabric, users may invoke and feed the application via B-Fabric.

We are aware of several systems with similar targets, even commercial ones
such as BioPoint [5] and CapitalBio [6]. The goal of this short paper is to share
some potentially useful experiences we made with implementing and running
B-Fabric. Section 2 gives a quick overview of the B-Fabric architecture and



sketches roughly how data and application integration works in B-Fabric. Sec-
tion 3 discusses some interesting experiences with B-Fabric and addresses some
shortcomings of the current system. Section 4 provides an outlook.

2 System Architecture of B-Fabric

B-Fabric is a life sciences data management system composed of distributed,
loosely-coupled components based on open source technologies. The system is
dynamically extendable by allowing the coupling of external components at run-
time. Figure 1 gives an overview of the B-Fabric architecture.

Fig. 1. B-Fabric System Architecture

The B-Fabric Database stores and manages all scientific annotations and base
administrative data, e.g. about projects and users. Currently, PostgresSQL is
deployed for this purpose. As B-Fabric considers databases as black-box compo-
nents, any SQL database system could be used instead, for which Apache OJB [4]
supports an object-relational mapping from Java to SQL. The B-Fabric Reposi-
tory stores experimental (raw and processed) data. It is a RAID-6 -based storage
that provides high reliability. This repository is fully encapsulated, i.e., accessible
only through B-Fabric. Users interact with B-Fabric through Frontends using a
Web browser. A frontend acts as Web portal providing users controlled access
to B-Fabric data. It is implemented with Apache Cocoon [2]. Workhorses are
used to execute specific tasks, such as data copying, indexing, and searching. All
relevant data is indexed by Apache Lucene [3], i.e., is findable via fulltext search.
There could be several frontends and workhorses deployed in the system in order
to improve the availability and scalability. Frontends and workhorses communi-
cate with each other via Apache ActiveMQ [1], which provides persistent message
queues for asynchronous communication. With the concept of Registered Appli-
cations, a run-time integration of arbitrary applications into B-Fabric is possible.
Using the registration profiles, B-Fabric dynamically extends the frontends with
appropriate buttons to invoke and feed these applications with B-Fabric data.
These applications may be external ones which run autonomously beyond the
control of B-Fabric. Applications can also be invoked within workflows to model
scientific pipelines. B-Fabric uses OSWorkflow [13] as workflow engine.

There are also several external components that interact with B-Fabric. User
PCs are standard computers running a Web browser to enable access to B-Fabric



through frontends. Typically, a scientist interacts with B-Fabric to search for and
download data for analysis reasons. Various data analysis and/or data visualiza-
tion tools can be deployed on these PCs to accomplish those purposes. Scientific
Data Marts correspond to external systems that provide scientific data man-
agement, analysis, and/or visualization functionality. Currently, B-Fabric uses
Rosetta Resolver [14] and Mascot Integra [11] as marts for the detailed manage-
ment and analysis of transcriptomics and proteomics experiments, respectively.
For some instruments, however, these data marts are not suitable. In such cases,
B-Fabric implements a custom data mart to handle this data. External Data
Stores represent life sciences data available on external systems that are ac-
cessible by B-Fabric. By configuring these data stores, their data can be made
available through B-Fabric by simply maintaining links to them. As external
data stores are autonomous, the corresponding external system is responsible
for ensuring consistency of that data, i.e., it must guarantee that linked data is
not deleted. Instrument PCs refer to computers that are attached to an instru-
ment that generates and holds scientific data to be imported into B-Fabric. To
support computationally and data-intensive analysis, B-Fabric can also execute
applications on a Computing Cluster/Grid.

Figure 2 shows the integration of some external components in action by
exemplifying three most frequently occurring application scenarios. The arrows
depict the sequential flow of interaction between a specific scientist and B-Fabric.

Fig. 2. Application and Data Integration

The first scenario shows how data imports are done from instruments to B-
Fabric. Scientist 1 wants to import his data generated by the Affymetrix
GeneChip instrument. Using B-Fabric this scientist invokes a previously reg-
istered application, called AffymetrixImport. This application accesses the in-
strument and copies the data into the B-Fabric repository (physical import),
where it will be under total control of B-Fabric. Note that when coupling an
instrument to B-Fabric a corresponding import application has to be registered,
too. The second scenario illustrates the case where some external data is made
available via B-Fabric. To do this, Scientist 2 executes the LogicalImport ap-
plication. The rest is assured by this application which creates a link in B-Fabric
to the data at the external data store (logical import). The last scenario is an
example where the user has higher computing needs. Scientist 3 asks B-Fabric
to execute his job in the Grid. To meet this demand in our case, B-Fabric ac-
cesses the Sun Grid Engine running on a compute cluster outside of B-Fabric.
The job is executed by the cluster and the results are sent back to B-Fabric.



3 Experiences with B-Fabric

Data modeling and vocabulary. Many data integration projects failed simply due
to the ambitious goal to provide an integrated data scheme that can capture all
potentially created data in the application domain at a detailed level of granu-
larity. Already at the beginning of the B-Fabric project, it became clear that in
a very dynamic research environment as the FGCZ it is practically impossible
to agree on a scheme. Sticking one-to-one with standards such as MIAME [12]
or GO [7] was however not a solution. First, there are many researchers arguing
that they are doing research on issues that have not been defined yet. Second,
depending on the concrete area of the scientists they use different notions and
granularities to describe their scientific data. Third, these standards are so huge
in size that for most scientist they are impractical for daily use. Therefore, it is
vital to have a simple but exact vocabulary. It is a balancing act to use terms
that are as precise as needed, but not precise enough that users cannot find them
easily within an overwhelming set of terms. B-Fabric hence concentrates on a
very small data scheme describing only the metadata of central entities such as
samples and extracts. After many discussions with our researchers at FGCZ we
came to the conclusion that only a small set of commonly agreeable attributes
should be fixed for such entities and that the vocabulary defined by the different
standards should be initially restricted to that part which is potentially needed
for the research technologies supported at FGCZ. To be open to new research
directions, B-Fabric allows to dynamically extend the vocabularies at run-time.
As soon as a new entry is provided by a user, a reviewing process is started.
Depending on the project membership of that user, the coach of that project, in
our case an FGCZ employee, is triggered to release or reject the new entry.

Application integration and loose coupling Most facilities like the FGCZ have
applications and workflows for data processing that are now running stable for
years. Moving such functionality into a central system can become a compli-
cated task for several reasons. First, the original functionality is provided by
proprietary tools whose internal processing is not known. Second, the scientists
and developers that created and installed the application often are no longer
available. Third, replacing existing code eats up resources without providing
new benefits for the users. These were the reasons why we started implementing
connectors to different external applications. However, writing such a connector
for every application that had to be connected to B-Fabric was quite laborious.
Needs and requests for new applications popped up faster than the implemen-
tation could progress. This was the reason why we introduced the Application
Registration concept in B-Fabric. First, a connector is written for a certain type
of external application, e.g. for running R scripts [15] on an Rserve system [16].
Then, a minimal interface is defined to describe how the external application gets
its input. Finally, the scientist writes the external application in any language.
The advantage of this approach is that an upgrade or even a replacement of
components of an external application is possible without touching the B-Fabric
system. Defining the interface towards the external application was quite tricky.
Allowing too much flexibility may result in errors since the user usually is not
aware of the restrictions of the corresponding external application. Additionally,
the heterogenous data that is stored in B-Fabric provides a lot of traps.



External responsibility. Although B-Fabric knows the scientific annotations best,
it may not be able to interpret and process the experimental data correctly if
the instruments produce data in proprietary formats. This problem is solved
by moving the responsibility of the data processing to the external application.
B-Fabric provides the application input via a minimal interface. The external
application is then able to fetch the information to process the raw data correctly.
B-Fabric then just has to wait for the result. This approach requires that B-
Fabric trusts the external application to provide the result in a correct way.
The external applications need to take additional effort to process the data.
Our experiences show that examples and documentation on the development
of connectors are vital to support stable and generally accepted applications.
However, if a certain level of commitment is achieved, additional functionality
can be provided quickly and without changing the B-Fabric interface.

Transparency. To consistently link together experimental data with scientific
annotations, the data must be provided in a reliable environment. B-Fabric
provides these services on its own (B-Fabric Repository, B-Fabric Database).
However, as most facilities do already have such an infrastructure on their own
and duplicating data can get quite expensive, B-Fabric allows to place links to
resources located on external data stores. In this way, existing data can virtually
be integrated into B-Fabric without additional costs in terms of infrastructure.
It is even better than just referencing to external data since B-Fabric provides a
transparent access to the data, i.e., a user can use the same functionality whether
the data is located in the B-Fabric repository or somewhere else. This is achieved
by handling files and other data resources through URIs. Each resource knows
where its data is located (host and path) and also how to get it (protocol).

Data Import. To annotate scientific data, the system must first be aware of
the corresponding files. In B-Fabric, this is supported by importing or linking
data from the instrument PCs. Pre-configured data providers then take care of
the original location of the scientific data on the instrument PC. These data
providers support transparently many protocols like SSH [10], SMB [8], JDBC
[9] etc. and therefore provide simple and unified data handling. This allows a user
to import his data without having any further knowledge about the infrastruc-
ture. Currently the data providers are Spring [17] configured components. This
was an easy and straight-forward way to implement them, but this approach
has the drawback that it is not possible to add or modify such providers at
run-time. By changing data providers into hot-pluggable components, B-Fabric
could allow to integrate new instruments without restarting the system.

Data Export. Regardless of the systems functionality, there are always users with
needs that go further than the system can support. The best solution to address
this issue is to provide an easy access to the data. Scientists should be able to
export data and do their calculations on their own. B-Fabric provides several
methods for data export. For instance, search results can be exported. Another
example is the download of data resources, i.e., files. Due to the huge size of
the interconnected data, B-Fabric compresses the data and provides a download
link for the user. The download of predefined reports is another example. For
specific needs and applications, B-Fabric allows reports that collect and prepare
data for later use. If it turns out that scientists use a certain type of export very



often to perform a specific task, this task becomes a candidate for a B-Fabric
internal functionality.

Data Access Control. At FGCZ data access is controlled at project level, i.e.,
project state and membership define access to all the data within a project.
This is a good approach in environments where we have small projects with
clear and exact aims. If there are huge projects that run for many years, this
approach has some disadvantages. Especially if there are scientists from different
facilities working within the same project, but should not be able to access each
others results. As a simple effective solution is to divide such projects into several
smaller projects according to their goals and members.

4 Outlook

B-Fabric was designed according to the specific needs of the Functional Genomics
Center Zurich (FGCZ), for instance, w.r.t. data access policies and data struc-
turing. To make B-Fabric also very attractive to other research groups/centers,
future releases will generalize it in different directions. First, ad-hoc coupling of
external data stores will be supported. To avoid inconsistencies, the autonomous
data stores have to follow basic data storage rules. Second, a more flexible permis-
sion management will be implemented. The owner of the data shall be allowed
to grant and revoke access rights on different granules of his data also if the
corresponding project is not published yet. Third, the data networks shall be
graphically visualized in such a way that the link and correlation between the
different life sciences data become reproducible.

References

1. Apache ActiveMQ. http://activemq.apache.org/
2. Apache Cocoon. http://cocoon.apache.org/
3. Apache Lucene. http://lucene.apache.org/
4. Apache Object Relational Bridge - OJB. http://db.apache.org/ojb/
5. BioPoint’s Life Sciences Information Management System.

http://www.turningpointsystems.com/biopoint.html
6. CapitalBio Life Science Data Management System.

http://www.capitalbio.com/life sciences/Products/Software InformationSystem
7. Gene Ontology. http://www.geneontology.org/
8. JCIFS. http://jcifs.samba.org/
9. Java Database Connectivity - JDBC. http://java.sun.com/products/jdbc/

10. Java Secure Channel - JSch. http://www.jcraft.com/jsch/
11. Mascot Integra - Data Management for Proteomics.

http://www.matrixscience.com/integra.html
12. Minimum Information About a Microarray Experiment - MIAME.

http://www.mged.org/Workgroups/MIAME/miame.html
13. OpenSymphony - OSWorkflow. http://www.opensymphony.com/osworkflow/
14. Rosetta Resolver System. http://www.rosettabio.com/products/resolver/
15. R-Project. http://www.r-project.org/
16. Rserve. http://www.rforge.net/Rserve/
17. Spring Framework. http://www.springsource.org/
18. Türker, C., Stolte, E., Joho, D., Schlapbach, R.: B-Fabric: A Data and Application

Integration Framework for Life Sciences Research. DILS 2007: 37-47


